Augment dataframe with predictions of model
Arguments
- model
an `mgcv`, `lme4` or `nlme` model.
- df
an `sf` data frame to be augmented with model predictions.
Value
An augmented `sf` data frame with extra columns showing estimates of random effects from model.
Examples
prepdata <- st_bridges(uk_election,"constituency_name")
mgcv::gam(health_not_good ~
s(constituency_name, bs='mrf', xt=list(nb=prepdata$nb), k=100),
data=prepdata, method="REML") |>
st_augment(uk_election)
#> Simple feature collection with 632 features and 10 fields
#> Geometry type: GEOMETRY
#> Dimension: XY
#> Bounding box: xmin: 5513.182 ymin: 7057.949 xmax: 655655.4 ymax: 1218620
#> Projected CRS: OSGB36 / British National Grid
#> First 10 features:
#> degree_educated health_not_good white con_swing population
#> 1 -1.21794372 2.4694480 0.6393329 8.5917223 66133
#> 2 0.04609836 0.5666903 0.6561204 2.2040312 56415
#> 3 0.26593462 -0.8699365 0.1441816 7.1285493 99654
#> 4 1.62837520 -1.7731408 0.3038995 2.9732599 93197
#> 5 -1.35386780 0.8155333 0.6963927 -0.2362672 85845
#> 6 -0.21109416 -1.3619136 -0.1675498 5.6993250 103922
#> 7 -0.74760203 0.8047040 0.3409127 7.4304029 76974
#> 8 1.63438559 -1.1613230 0.1605045 -0.4813182 96591
#> 9 -0.65926781 -0.1982048 0.6815335 5.6002269 82505
#> 10 -0.96445730 0.9975218 0.6930268 9.4698002 87883
#> region county constituency_name mrf.smooth
#> 1 Wales West Glamorgan Aberavon 1.82293254
#> 2 Wales Clwyd Aberconwy 0.48444472
#> 3 Scotland Scotland Aberdeen North -1.58021815
#> 4 Scotland Scotland Aberdeen South -1.70435245
#> 5 Scotland Scotland Airdrie and Shotts 0.07320101
#> 6 South East Hampshire Aldershot -1.51043755
#> 7 West Midlands West Midlands Aldridge-Brownhills 0.63368847
#> 8 North West Greater Manchester Altrincham and Sale West 0.03473148
#> 9 Wales Clwyd Alyn and Deeside 0.14602595
#> 10 East Midlands Derbyshire Amber Valley 0.52999669
#> se.mrf.smooth geometry
#> 1 0.1944985 POLYGON ((290786.3 202886.7...
#> 2 0.2178170 POLYGON ((283209.3 381440.5...
#> 3 0.2909148 MULTIPOLYGON (((395379.7 80...
#> 4 0.3990368 POLYGON ((396214 805849.7, ...
#> 5 0.1670717 POLYGON ((290854.4 662154.9...
#> 6 0.1735666 POLYGON ((485408.1 159918.6...
#> 7 0.1068069 POLYGON ((406519.5 305056.1...
#> 8 0.1541860 POLYGON ((379104.1 393145.7...
#> 9 0.1869323 POLYGON ((331643.4 372873.5...
#> 10 0.1284806 POLYGON ((444868.5 353960.2...